
1

2022/23 SLD Project

The Arduino Project

Jan 2023

Grant Knowles

2- 2 -

Agenda

▪ Morning Clinic

▪ Kit Buster Project Objective

▪ Project functionality

▪ Afternoon Workshop

▪ Physical Implementation

▪ Step 1 – Servo Operation

▪ Step 2 – LED Implementation

▪ Step 3 – Buzzer Implementation

▪ Further Evolution

3- 3 -

Objective

▪ To expand our Arduino knowledge through
implementation of a more complex solution

▪ Integrate functionality from multiple Elegoo Lessons

▪ Explore program flow

▪ Explore programming approach

▪ Learn new code functions

4- 4 -

Objective

▪ To implement Lloyd’s Brewery Door solution for a single
door.

▪ Basic functionality:

▪ Motorized door

▪ Status Indicator lights

▪ Warning sounds

▪ Obstruction Sensor

5- 5 -

Operation

• Real life scenario.

• Train approaches the door, is greeted with a closed door and solid
red light.

• The conductor presses Button 1 requesting the door to be
opened.

• The red light flashes, the buzzer sounds and the door opens
• Once the door opens, the red light is turned off, the green light

turns on and the buzzer stops
• The train advances, drops off the car and backs out
• The conductor presses Button 2 requesting the door to be closed.
• The system confirms there are no obstructions at the door
• The red light flashes, buzzer sounds and the door closes.
• Once the door is closed, the red light turns solid and the buzzer

stops.

6- 6 -

Flow Chart

7- 7 -

Summary

▪ To expand our Arduino knowledge through
implementation of a more complex solution

▪ Integrate functionality from multiple Elegoo Lessons

▪ Explore program flow

▪ Explore programming approach

▪ Learn new code functions

▪ The Afternoon Workshop

▪ Physical Implementation

▪ Step 1 – Servo Operation

▪ Step 2 – LED Implementation

▪ Step 3 – Buzzer Implementation

▪ Further Evolution

8- 8 -

The End

Questions ?

9- 9 -

Afternoon Workshop

▪ The Afternoon Workshop

▪ Physical Implementation

▪ Step 1 – Servo Operation

▪ Step 2 – LED Implementation

▪ Step 3 – Buzzer Implementation

▪ Further Evolution

10- 10 -

Step 1 - Parts Required

• UNO board
• Servo
• LEDs: green red
• Resistor 220 Ohm, qty:2
• Buzzer
• Buttons, qty:2
• Jumper Wires

11- 11 -

Step 1 - Schematic

12- 12 -

Step 1 - Physical Implementation

13- 13 -

Step 1 - Physical Implementation

14- 14 -

Step 1 – Build Solution

• Now it’s time for getting your fingers dirty!

• Assembly your hardware as per the schematic

15- 15 -

Project Approach

▪ There are more than one
way to solve a problem!

▪ This happens to be the
route I chose!

16- 16 -

Operation

• Real life scenario.

• Train approaches the door, is greeted with a closed door and solid
red light.

• The conductor presses Button 1 requesting the door to be
opened.

• The red light flashes, the buzzer sounds and the door opens
• Once the door opens, the red light is turned off, the green light

turns on and the buzzer stops
• The train advances, drops off the car and backs out
• The conductor presses Button 2 requesting the door to be closed.
• The system confirms there are no obstructions at the door
• The red light flashes, buzzer sounds and the door closes.
• Once the door is closed, the red light turns solid and the buzzer

stops.

17- 17 -

Flow Chart

18- 18 -

Functionality Approach

▪ Based on Door Status

▪ Closed

▪ Opening

▪ Open

▪ Closing

▪ State Change

▪ Requested via Push Buttons

▪ Outputs

▪ Servo

▪ LEDs

▪ Buzzer

19- 19 -

Project Approach

▪ To implement our solution in 3 increments;

▪ Step 1 – Core functionality

▪ Read buttons

▪ Activate servo

▪ Step 2 – Add lights

▪ Step 3 – Add sound

▪ Step Future – Add obstruction detection

20- 20 -

Flow Chart

Start
Define values

Initial System Set Up

Open

Button

Pressed?

Yes

No

Raise door

Flash red LED

Sound buzzer

Door State = Open

Closed

Button

Pressed?

Yes

No

Lower door

Flash red LED

Sound buzzer

Door State = Closed

Door

Closed? Red LED on

Door

Open? Green LED

on

Yes

No

Yes

No

21- 21 -

Flow Chart – Servo / LED / Buzzer

Raise door

Flash red LED

Sound buzzer

Servo

For (start angle, max angle, increment)

Increment servo by one degree

Write to servo

Servo Wait / delay period

LED Blink

Based on system clock

Switch LED state

Write to LED – on/off toggle

Buzzer Tone

Based on system clock

Switch tones

Write to buzzer – audio tone

22- 22 -

Step 1 – Buttons & Servo

▪ First Configuration

▪ Functionality supported

▪ Buttons – Open / Close requests

▪ Servo – Open / Close door

▪ LED indication – Open / Close

23- 23 -

Flow Chart - Servo

Raise door

Flash red LED

Sound buzzer

Servo

For (start angle, max angle, increment)

Increment servo by one degree

Write to servo

Servo Wait / delay period

24- 24 -

Software Components

▪ Leverage Elegoo Lessons;

▪ Push Buttons

▪ LEDs

▪ Servo

▪ Buzzer

▪ Borrow from the web

▪ Access our own experts

25- 25 -

Step 1 -

▪ Initial sketch

▪ Read Buttons,

▪ Status LEDs,

▪ Servo movement

26- 26 -

Step 1 - Push Buttons

▪ Lesson 5 Digital Inputs

▪ Monitor the Open / Close request buttons

int ledPin = 5;
int buttonApin = 9;
int buttonBpin = 8;

byte leds = 0;

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(buttonApin, INPUT_PULLUP);
pinMode(buttonBpin, INPUT_PULLUP);

}
void loop() {

if (digitalRead(buttonApin) == LOW) {
digitalWrite(ledPin, HIGH);

}
if (digitalRead(buttonBpin) == LOW) {

digitalWrite(ledPin, LOW);
}

}

27- 27 -

Step 1 - LEDs

▪ Lesson 3 LEDs

▪ Red / Green Status LEDs

▪ Flash Red LED while door is in motion

▪ Adjustable flash rate

void setup() {
pinMode(5, OUTPUT); // initialize digital pin 5 as an output.

}

// the loop function runs over and over again forever

void loop() {
digitalWrite(5, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(5, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

28- 28 -

Step 1 - Servo

▪ Lesson 9 Servo

▪ Control movement speed

▪ Adjustable upper / lower stop range
#include “Servo.h”

Servo myservo; // create servo object to control a servo

int pos = 0; // variable to store the servo position

void setup() {
Serial.begin(9600);
myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop() {
for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
}

29- 29 -

Step 1 – Code Walk Thru

▪ Review the Step 1 sketch

30- 30 -

Step 1 – Run Sketch

• Compile & Load the first sketch
• Step 1 – Buttons_Servo

• Exercise the servo/LEDs by pressing the buttons

31- 31 -

Step 2 – Buttons, Servo & LEDs

▪ Second Configuration

▪ Extends the Step 1 configuration

▪ Incremental functionality supported

▪ Flashing LEDs while the door is in motion

▪ New challenge

▪ How to perform two functions in parallel with a single
thread processor?

▪ Operate servo

▪ Flash red LED

32- 32 -

Flow Chart

Start
Define values

Initial System Set Up

Open

Button

Pressed?

Yes

No

Raise door

Flash red LED

Sound buzzer

Door State = Open

Closed

Button

Pressed?

Yes

No

Lower door

Flash red LED

Sound buzzer

Door State = Closed

Door

Closed? Red LED on

Door

Open? Green LED

on

Yes

No

Yes

No

33- 33 -

Flow Chart – Servo / LED

Raise door

Flash red LED

Sound buzzer

Servo

For (start angle, max angle, increment)

Increment servo by one degree

Write to servo

Servo Wait / delay period

LED Blink

Based on system clock

Switch LED state

Write to LED – on/off toggle

34- 34 -

Step 2 – Flash LED

▪ Sketch code walk thru

35- 35 -

Step 2 – Build Solution

• Play time again!

• No hardware changes are required.

• Compile & Load the second sketch
• Step 2 – Buttons_Servo_LED

• Exercise the servo/LEDs by pressing the buttons

36- 36 -

Step 3 – Buttons, Servo, LEDs & Buzzer

▪ Third Configuration

▪ Extends the Step 2 configuration

▪ Incremental functionality supported

▪ Sound Buzzer while the door is in motion

▪ Further challenge

▪ How to perform three discrete functions in parallel
with a single thread processor?

▪ Operate servo

▪ Flash red LED

▪ Sound buzzer (alternate frequencies)

37- 37 -

Flow Chart

Start
Define values

Initial System Set Up

Open

Button

Pressed?

Yes

No

Raise door

Flash red LED

Sound buzzer

Door State = Open

Closed

Button

Pressed?

Yes

No

Lower door

Flash red LED

Sound buzzer

Door State = Closed

Door

Closed? Red LED on

Door

Open? Green LED

on

Yes

No

Yes

No

38- 38 -

Flow Chart

Raise door

Flash red LED

Sound buzzer

Servo

For (start angle, max angle, increment)

Increment servo by one degree

Write to servo

Servo Wait / delay period

LED Blink

Based on system clock

Switch LED state

Write to LED – on/off toggle

Buzzer Tone

Based on system clock

Switch tones

Write to buzzer – audio tone

39- 39 -

Buzzer

▪ Lesson 7 Passive Buzzer

▪ Two tone sound

▪ Adjustable frequencies

▪ Adjustable duration

#include "pitches.h"

// notes in the melody:
int melody[] = {
NOTE_C5, NOTE_D5, NOTE_E5, NOTE_F5, NOTE_G5, NOTE_A5, NOTE_B5, NOTE_C6};

int duration = 500; // 500 miliseconds

void setup() {
}

void loop() {
for (int thisNote = 0; thisNote < 8; thisNote++) {

tone(8, melody[thisNote], duration); // pin8 output the voice, every scale is 0.5 second
delay(1000); // Output the voice after several minutes

}

delay(2000); // restart after two seconds
}

40- 40 -

Step 3 – Buzzer

▪ Sketch code walk thru

41- 41 -

Step 3 – Build Solution

• Play time again!

• No hardware changes are required.

• Compile & Load the second sketch
• Step 3 – Buttons_Servo_LED_Buzzer

• Exercise the servo/LEDs by pressing the buttons

42- 42 -

Future Enhancements

Future enhancements could include:
▪ Incorporate an obstruction detection

▪ Incorporating button debouncer s/w,

▪ Merge the buttons into a single button,

▪ Incorporate error checking in the ultra sonic sensor,

▪ Incorporate a single multi colour LED,

▪ A restart sequence if the power is interrupted,

▪ etc

43- 43 -

Next Steps

▪ Recent Homework:

▪ 10 Ultrasonic Sensor

▪ 11 Temperature & Humidity Sensor

▪ 12 Joystick

▪ 13 IR Receiver

▪ Ron’s 3 Servo Control Exercises

▪ Execute Lessons

▪ 14 LCD Display

▪ 15 Thermometer

▪ 16 Eight LED with 74HC595

▪ 17 Serial Monitor

▪ 18 Photocell

44- 44 -

Next Steps

▪ Your Project

▪ Start thinking about what you want to do with your

Arduino

▪ Future workshops;

▪ Monday Feb 6th - ZOOM

▪ Saturday Feb 25th – Kit Busters Workshop

▪ Monday Mar 13th - ZOOM

45- 45 -

The End

Questions ?

	Slide 1: 2022/23 SLD Project
	Slide 2: Agenda
	Slide 3: Objective
	Slide 4: Objective
	Slide 5: Operation
	Slide 6
	Slide 7: Summary
	Slide 8: The End
	Slide 9: Afternoon Workshop
	Slide 10: Step 1 - Parts Required
	Slide 11: Step 1 - Schematic
	Slide 12
	Slide 13: Step 1 - Physical Implementation
	Slide 14: Step 1 – Build Solution
	Slide 15
	Slide 16: Operation
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Software Components
	Slide 25: Step 1 -
	Slide 26: Step 1 - Push Buttons
	Slide 27: Step 1 - LEDs
	Slide 28: Step 1 - Servo
	Slide 29
	Slide 30: Step 1 – Run Sketch
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Step 2 – Flash LED
	Slide 35: Step 2 – Build Solution
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Buzzer
	Slide 40: Step 3 – Buzzer
	Slide 41: Step 3 – Build Solution
	Slide 42: Future Enhancements
	Slide 43: Next Steps
	Slide 44: Next Steps
	Slide 45: The End

